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1. Introduction

Let π(x) be the number of primes ≤ x. The famous prime number theorem, first proved by
Hadamard and de la Vallèe Poussin, asserts the following:

Theorem 1 (Prime number theorem).

(1) π(x) ∼ x

log x

as x→ +∞. (This means limx→+∞(π(x) log x)/x = 1).

In Chapter 7 of [4], a complex analytic proof of the prime number theorem was given, based on
analysis of the Chebychev’s ψ function:

ψ(x) =
∑
p

∑
m∈N : pm≤x

log p =
∑
p≤x

[
log x

log p

]
log p,

where [x] is the greatest integer less than or equal to x. (Any sum or product over p in this article
is a sum or product over all primes p.) There they used some estimates of ζ near the line Re s = 1
(more precisely, an upper bound for |ζ ′(s)/ζ(s)|). On the other hand, in [2], Newman gave another
complex analytic proof of the prime number theorem, using only the vanishing of ζ on the line
Re s = 1, by considering the ϕ function:

ϕ(x) =
∑
p≤x

log p.

(See also the exposition in [5].) In this article, we try to combine the two approaches, and adapt
Newman’s argument so that it works through Chebychev’s ψ function (rather than the ϕ function).
We note in passing that elementary approaches to the prime number theorem are also possible,
most notably by Erdös [1] and Selberg [3]. But we will not discuss these here.

Recall that

ζ(s) =

∞∑
n=1

1

ns
, valid for Re s > 1.

We will assume known that ζ has a meromorphic continuation to C, so that

(i) the only singularity of ζ in C is a simple pole at s = 1, and
(ii) the residue of ζ at s = 1 is 1.
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In other words, ζ(s)− 1
s−1 is entire. This can be done, for instance, by establishing the functional

equation of ξ(s) := π−s/2Γ(s/2)ζ(s). We also assume known the following product factorization of
ζ over all primes:

ζ(s) =
∏
p

(1− p−s)−1, valid for Re s > 1.

2. Non-vanishing of ζ on Re s = 1

We now prove the following theorem.

Theorem 2. ζ has no zeroes on the vertical line where Re s = 1.

Proof. We need three observations.

First, note that ζ is real-valued on {s ∈ R : s > 1}. Hence

ζ(s) = ζ(s) for all s ∈ C.

This shows that the (non-real) zeroes of ζ comes in conjugate pairs: if s is a zero of ζ, then so is
s, and ζ vanishes to the same order at both s and s.

Next, recall that if f is a meromorphic function near a point z0, then the order of of f at z0

(which is positive if f vanishes there, negative if f has a pole there) can be computed via the residue
of the logarithmic derivative of f at z0. In particular, for any t ∈ R, the order of ζ at 1 + it is

(2) ord1+itζ = lim
ε→0

ε ζ ′(1 + it+ ε)

ζ(1 + it+ ε)
.

Finally, we note that the product factorization of ζ allows one to compute the logarithmic
derivative of ζ:

ζ ′(s)

ζ(s)
= −

∑
p

p−s log p

1− p−s
= −

∑
p

∑
m

log p

pms
, valid for Re s > 1.

where the sum over m is over all positive integers m. In particular, introducing the von Mangoldt
function Λ, where

Λ(n) =

{
log p, if n = pm for some prime p and some positive integer m

0, otherwise
,

we see that the logarithmic derivative of ζ is a Dirichlet series, whose coefficients are precisely given
by Λ:

(3)
ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
, valid for Re s > 1.

What will be important for us is that Λ(n) is real and non-negative for all positive integers n.

Now we are ready to put all these together. First, since ζ has a pole at s = 1, it cannot have a
zero at s = 1. Next, suppose ζ is zero at s = 1 + it for some t ∈ R. We show that this is impossible
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by considering the orders of ζ at 1± 2it, 1± it and 1: Combining (2) and (3), we see that

ord1+2itζ = − lim
ε→0+

ε

∞∑
n=1

Λ(n)

n1+ε
n−2it

ord1+itζ = − lim
ε→0+

ε
∞∑
n=1

Λ(n)

n1+ε
n−it

ord1ζ = − lim
ε→0+

ε

∞∑
n=1

Λ(n)

n1+ε

ord1−itζ = − lim
ε→0+

ε
∞∑
n=1

Λ(n)

n1+ε
nit

ord1−2itζ = − lim
ε→0+

ε

∞∑
n=1

Λ(n)

n1+ε
n2it

We now multiply these five equations by 1, 4, 6, 4, 1 respectively, and add them all up. Observe
that

(4) n−2it + 4n−it + 6 + 4nit + n2it = (nit/2 + n−it/2)4 = (2 cos(t log n/2))4 ≥ 0.

Since Λ(n) ≥ 0 for all n, we then see that

ord1+2itζ + 4 ord1+itζ + 6 ord1ζ + 4 ord1−itζ + ord1−2itζ ≤ 0.

But
ord1ζ = −1,

ord1+itζ = ord1−itζ,

and
ord1+2itζ = ord1−2itζ ≥ 0.

Hence
8 ord1+itζ − 6 ≤ 0,

which contradicts our assumption that ζ(1 + it) = 0. �

We remark that (4) is really Lemma 1.4 of Chapter 7 of [4] in disguise. Also, by rewriting ζ ′/ζ as
the derivative of log ζ, and undoing the derivative, the above argument essentially gives Corollary
1.5 of Chapter 7 of [4].

3. Proof of the prime number theorem

We are now ready for the proof of the prime number theorem. First, we recall Chebyshev’s ψ
function:

ψ(x) =
∑
p

∑
m∈N : pm≤x

log p =
∑
p≤x

[
log x

log p

]
log p.

It is well known that the prime number theorem is equivalent to the assertion that

(5) ψ(x) ∼ x.
Indeed, assume for the moment that (5) holds. Then since

ψ(x) ≤
∑
p≤x

log x = π(x) log x,
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dividing both sides by x and letting x→ +∞, we get

1 ≤ lim inf
x→∞

π(x) log(x)

x
.

Also, for any α ∈ (0, 1), we have

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x
log p ≥ (π(x)− π(xα)) log(xα) ≥ α(π(x)− xα) log x.

Hence if (5) holds, then dividing the above inequality by x, and letting x→∞, we get that

1 ≥ α lim sup
x→+∞

(π(x)− xα) log x

x
= α lim sup

x→+∞

π(x) log x

x
.

Letting α→ 1−, we get

1 ≥ lim sup
x→+∞

π(x) log x

x
.

Together we obtain (1), and the prime number theorem holds.

The converse implication, namely that (1) implies (5), is not much harder. Since we do not need
this direction of the implication, we leave this verification to the interested reader.

Now to prove the prime number theorem, it suffices to verify (5). In order to show that ψ(x) ∼ x
as x→ +∞, it may help to first verify a weaker statement, namely that ψ(x)/x remains bounded
as x→ +∞. This is what we are going to do next.

Proposition 3.
ψ(x)

x
remains bounded as x→ +∞.

Proof. First, we claim that there exists a constant C, such that for any positive integer n, we have

(6) ψ(2n)− ψ(n) ≤ Cn.

To prove this claim, note that

(7) ψ(2n)− ψ(n) =
∑
p

∑
{m : n<pm≤2n}

log p = log

 ∞∏
m=1

∏
{p : n<pm≤2n}

p

 .

In the product inside the logarithm, consider first the term corresponding to m = 1. We have

(8)
∏

{p : n<p≤2n}

p ≤
(

2n

n

)
.

Indeed (
2n

n

)
=

(2n)(2n− 1) . . . (n+ 1)

n!

is an integer, so that n! is a factor of (2n)(2n− 1) . . . (n+ 1); also each prime p with n < p ≤ 2n is
a factor of (2n)(2n− 1) . . . (n+ 1). Since each such prime p is relatively prime with n!, we see that

(n!)
∏
{p : n<p≤2n} p divides (2n)(2n − 1) . . . (n + 1), i.e.

∏
{p : n<p≤2n} p divides

(
2n
n

)
. In particular,

(8) holds. This further implies

(9)
∏

{p : n<p≤2n}

p ≤ 22n,
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since (
2n

n

)
≤

2n∑
k=0

(
2n

k

)
= (1 + 1)2n = 22n.

This completes our estimate of the product inside the logarithm on the right hand side of (7).

Next, we consider those terms in the same product corresponding to m ≥ 2. If m ≥ 2, and
n < pm ≤ 2n, then p ≤

√
2n. Also, for each prime p, there is at most one power of p that lies in

(n, 2n]. Hence
∞∏
m=2

∏
{p : n<pm≤2n}

p ≤
∏

p≤
√

2n

p ≤ (
√

2n)
√

2n.

Hence, together with (9), we obtain

ψ(2n)− ψ(n) ≤ log
(

22n(
√

2n)
√

2n
)
≤ 2n log 2 +

√
2n log(2n)

2
.

This establishes our claim (6).

Now that we have the claim (6), we see that there exists a constant C ′ such that

ψ(2x)− ψ(x) ≤ C ′x
for all x ≥ 1. In fact it suffices to prove this for x large. To do so, take n to be the integer closest to x.
Then the sum defining ψ(x) and ψ(n) differ in at most one term, and |ψ(x)−ψ(n)| ≤ C log x ≤ C ′′x.
Similarly, |ψ(2x) − ψ(2n)| ≤ C ′′x. Hence together with the bound for ψ(2n) − ψ(n) we already
established, we see that ψ(2x)− ψ(x) ≤ C ′x, as desired.

Now we just iterate this estimate:

ψ(x)− ψ(x/2) ≤ C ′(x/2)

ψ(x/2)− ψ(x/4) ≤ C ′(x/4)

...

and sum up a geometric series on the right. Then

ψ(x) ≤ C ′x
as x→ +∞, as desired. �

The function ψ(x), defined for x > 1, can be identified with a function ψ(et), defined for t > 0.
The Laplace transform of the latter is then given by∫ ∞

0
ψ(et)e−stdt =

∫ ∞
1

ψ(x)

x

dx

xs
.

It turns out that the latter can be expressed in terms of the ζ function. More precisely, we have:

Proposition 4. ∫ ∞
1

ψ(x)

x

dx

xs
= − ζ

′(s)

sζ(s)
, valid for Re s > 1.

Proof. Just note that when Re s > 1, we have∫ ∞
1

ψ(x)

x

dx

xs
=

∫ ∞
1

∑
p

∑
pm≤x

log p
dx

xs+1
=
∑
p

∑
m

∫ ∞
pm

log p
dx

xs+1
=

1

s

∑
p

∑
m

log p

pms
= − ζ

′(s)

sζ(s)
.
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We are interested in showing
ψ(x)

x
− 1→ 0 as x → +∞. Hence we are led to consider the

following identity:

Proposition 5. ∫ ∞
1

(
ψ(x)

x
− 1

)
dx

xs
= − ζ

′(s)

sζ(s)
− 1

s− 1
, valid for Re s > 1.

Proof. This follows from Proposition 4 by simply noting that∫ ∞
1

dx

xs
=

1

s− 1
, for Re s > 1.

�

We note that the right hand side of the identity in Proposition 5 actually extends to a holomorphic
function on an open set containing the closed half plane {Re s ≥ 1}. Thus the following principle
applies:

Proposition 6. Let f(x) be a bounded function on [1,∞), and define

g(s) =

∫ ∞
1

f(x)
dx

xs
for Re s > 1.

Then g is holomorphic on Re s > 1. If g extends to a holomorphic function on an open set containing
the closed half plane Re s ≥ 1, then

∫∞
1 f(x)dxx exists, and is equal to g(1).

Indeed

f(x) :=
ψ(x)

x
− 1

is a bounded function by Proposition 3, and the integral∫ ∞
1

f(x)
dx

xs
=

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

xs

extends to a holomorphic function on an open set containing the closed half plane {Re s ≥ 1} by
Proposition 5. Hence assuming Proposition 6 for the moment, we obtain the following proposition:

Proposition 7. The improper integral

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

x
converges.

This allows us to finish the proof of the prime number theorem.

Proof of Theorem 1. As observed before, it suffices to verify (5). We argue by contradiction. Sup-
pose (5) is false. Then either there exists α > 1 such that ψ(xn) > αxn for a sequence {xn} with
xn → +∞, or there exists β < 1 such that ψ(yn) < βyn for a sequence {yn} with yn → +∞. In
the first case, since ψ is an increasing function, we have ψ(x) ≥ ψ(xn) ≥ αxn whenever x ≥ xn. In
particular,

(10)

∫ αxn

xn

(
ψ(x)

x
− 1

)
dx

x
≥
∫ αxn

xn

(αxn
x
− 1
) dx
x

=

∫ α

1

(α
x
− 1
) dx
x
,
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the last integral being strictly positive, and independent of n. This contradicts Proposition 7: in
fact, Proposition 7 implies that∫ αxn

xn

(
ψ(x)

x
− 1

)
dx

x
=

∫ αxn

1

(
ψ(x)

x
− 1

)
dx

x
−
∫ xn

1

(
ψ(x)

x
− 1

)
dx

x
→ 0

as n→∞, and this is not compatible with the lower bound we have obtained in (10).

Similarly, in the second case, we use ψ(x) ≤ ψ(yn) < βyn whenever x ≤ yn, to conclude that∫ yn

βyn

(
ψ(x)

x
− 1

)
dx

x
≤
∫ yn

βyn

(
βyn
x
− 1

)
dx

x
=

∫ 1

β

(
β

x
− 1

)
dx

x
< 0

independent of n. This contradicts Proposition 7. �

It remains to prove Proposition 6.

Proof of Proposition 6. Suppose f is bounded, say |f(x)| ≤M for all x ≥ 1. Suppose also that

g(s) :=

∫ ∞
1

f(x)
dx

xs

extends holomorphically to an open set containing the closed half plane {Re s ≥ 1}. Let

gt(s) =

∫ t

1
f(x)

dx

xs
.

Then gt is entire for all t, and our goal is to show that gt(1) converges to g(1) as t → +∞. For
ε > 0 and δ > 0, let Λε,δ be the positively oriented closed contour, given by

(11) Λε,δ = Cε + L
(1)
δ + L

(2)
δ + L

(3)
δ

where

• Cε be the semicircle in the right half plane {Re s > 1}, that is centered at 1 and of radius
1/ε;

• L(1)
δ is the horizontal straight line joining 1 + iε−1 to 1− δ + iε−1;

• L(2)
δ is the vertical straight line joining 1− δ + iε−1 to 1− δ − iε−1; and

• L(3)
δ is the horizontal straight line joining 1− δ − iε−1 to 1− iε−1.

Then for any ε > 0, as long as δ is sufficiently small, we have, by Cauchy integral formula, that

gt(1)− g(1) =
1

2πi

∫
Λε,δ

[gt(s)− g(s)]
ds

s− 1
.

For various technical reasons, we will actually use the following identity instead (which also follow
from Cauchy’s integral formula, since the extra factor ts−1(1 + ε2(s− 1)2) is entire in s, and equals
1 when s = 1):

(12) gt(1)− g(1) =
1

2πi

∫
Λε,δ

[gt(s)− g(s)]ts−1(1 + ε2(s− 1)2)
ds

s− 1
7



Now we decompose the above path integral into 4 parts, according to (11). For s ∈ Cε, we have

|gt(s)− g(s)| ≤
∫ ∞
t
|f(x)| dx

xRe s
≤ Mt1−Re s

Re s− 1
,

|ts−1| ≤ tRe s−1

|1 + ε2(s− 1)2| = |s− (1− iε−1)||s− (1 + iε−1)|
ε−2

≤ C |Re s− 1|
ε−1

1

|s− 1|
=

1

ε−1
.

Hence

(13)

∣∣∣∣ 1

2πi

∫
Cε

[gt(s)− g(s)]ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣ ≤ CMε

Next, let C̃ε be the semi-circle in the left half plane {Re s < 1}, that is centered at 1 and of radius

1/ε. Then we integrate the part concerning g in (12), over C̃ε instead of over L
(1)
δ + L

(2)
δ + L

(3)
δ .

(This is possible because gt is entire.) Hence∫
L
(1)
δ +L

(2)
δ +L

(3)
δ

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1
=

∫
C̃ε

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1
.

But on C̃ε, we have

|gt(s)| ≤
∫ t

1
|f(x)| dx

xRe s
≤ Mt1−Re s

1− Re s
.

Similarly as before, on C̃ε, we have

|ts−1(1 + ε2(s− 1)2)| ≤ C t
Re s−1(1− Re s)

ε−1
.

Hence

(14)

∣∣∣∣∣ 1

2πi

∫
L
(1)
δ +L

(2)
δ +L

(3)
δ

gt(s)t
s−1(1 + ε2(s− 1)2)

ds

s− 1

∣∣∣∣∣ ≤ CMε.

Finally, the contribution of g(s) to the contour integral over L
(1)
δ + L

(3)
δ is given by

(15)

∣∣∣∣∣ 1

2πi

∫
L
(1)
δ +L

(3)
δ

g(s)ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣∣ ≤ Cδε
where |g| ≤ C on L

(1)
δ ∪ L

(3)
δ . This is because L

(1)
δ and L

(3)
δ both have lengths ≤ δ, and that

1/|s− 1| ' ε on L
(1)
δ ∪ L

(3)
δ . (Note also that |ts−1| ≤ 1 since Re s < 1, and |1 + ε2(s− 1)2| ≤ C on

L
(1)
δ ∪ L

(3)
δ .) Now the contribution of g(s) to the contour integral over L

(2)
δ is given by

(16)

∣∣∣∣∣ 1

2πi

∫
L
(2)
δ

g(s)ts−1(1 + ε2(s− 1)2)
ds

s− 1

∣∣∣∣∣ ≤ C t−δεδ .
This is because the length of L

(2)
δ is 2/ε, the function |g| is bounded by C on L

(2)
δ , and |ts−1| = t−δ

on L
(2)
δ ; also, |1 + ε2(s− 1)2| ≤ C on L

(2)
δ , and 1/|s− 1| ≤ 1/δ on L

(2)
δ .
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Altogether, by (12), (13), (14), (15) and (16), we see that for any ε > 0, there exists a small
δ > 0, such that

|gt(1)− g(1)| ≤ CMε+
Ct−δ

εδ
.

Letting t→ +∞, we see that

lim sup
t→+∞

|gt(1)− g(1)| ≤ CMε.

Since ε > 0 is arbitrary, this shows that gt(1)→ g(1) as t→ +∞, as desired. �

4. Concluding remarks

We now try to connect the proof of the prime number theorem above, with the one in Chapter
7 of [4].

In Chapter 7 of [4], instead of proving directly the asymptotic (5) of ψ(x), they proceeded in
first establishing an asymptotic of ψ1(x), which by definition is the indefinite integral of ψ that is
zero when x = 1. In other words,

ψ1(x) :=

∫ x

1
ψ(y)dy,

and (5) was deduced in [4] by first showing that

(17) ψ1(x) ∼ x2

2
.

Now we observe that Proposition 4 can be rewritten as

− ζ
′(s)

sζ(s)
=

∫ ∞
0

ψ(et)e−stdt.

Since ψ(et)dt = e−td(ψ1(et)), we can integrate by parts in the last integral, and obtain

− ζ
′(s)

sζ(s)
= (s+ 1)

∫ ∞
0

ψ1(et)e−(s+1)tdt.

(The boundary terms vanish.) In particular, dividing both sides by (s+ 1), we obtain∫ ∞
0

ψ1(et)e−(s+1)tdt = −ζ
′(s)

ζ(s)

1

s(s+ 1)
.

Now this says the Laplace transform of the function e−tψ1(et) is −ζ
′(s)

ζ(s)

1

s(s+ 1)
. But this Laplace

transform can be inverted by the following Bromwich integral: if |f(t)| ≤ Ceat for all t ≥ 0, and
F (s) is the Laplace transform of f(t), i.e.

F (s) =

∫ ∞
0

f(t)e−stdt for Re s > a,

then whenever c > a, we have

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds for almost every t > 0.

(This follows from the Fourier inversion formula, applied to the function that is f(t)e−ct if t ≥ 0,
and zero if t < 0.) We make use of this inversion formula as follows.
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Recall that ψ(x)/x is bounded. This implies readily that ψ1(x)/x2 is bounded. Hence e−tψ1(et)
is bounded by Cet. Taking a = 1 in the above argument, we see that

e−tψ1(et) = − 1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)

est

s(s+ 1)
ds.

Multiplying both sides by et, and then rewrite x = et, we obtain a formula for ψ1(x) in terms of ζ:

(18) ψ1(x) = − 1

2πi

∫ c+i∞

c−i∞

ζ ′(s)

ζ(s)

xs+1

s(s+ 1)
ds

and this is precisely Proposition 2.3 of Chapter 7 of [4]. So that Proposition should really be
interpreted as a computation for the Laplace transform of ψ1(x)/x!

Finally, instead of arguing indirectly (as we did) that (5) holds, in Chapter 7 of [4], they proceeded
to obtain the asymptotics (17) of ψ1 directly using (18). To do so, one would ‘compute’ (18) as
one would usually do with Bromwich integral: one shifts the contour of integration to the left,

across the singularities of − ζ′(s)
ζ(s)

1
s(s+1) as much as possible. It turns out one only needs to shift the

contour past the first singularity at s = 1; the principle contribution comes from the pole s = 1,
and everything else is a small error compared to that. To actually carry this out, one needs upper
bounds for ζ ′/ζ near the critical line Re s = 1. This translates into lower bounds for ζ on the line
Re s = 1 (which is a quantitative version of the non-vanishing of ζ on Re s = 1), and upper bounds
for ζ ′ on the line Re s = 1 (which was a quantitative version of the analytic continuation of ζ past
the line Re s = 1, as we have seen in Chapter 6 of [4]). With these estimates for ζ, they finish the
proof of the asymptotics (17) of ψ1, and hence the proof of the prime number theorem in Chapter
7 of [4].
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